Homomultimerization of the coxsackievirus 2B protein in living cells visualized by fluorescence resonance energy transfer microscopy.

نویسندگان

  • Frank J M van Kuppeveld
  • Willem J G Melchers
  • Peter H G M Willems
  • Theodorus W J Gadella
چکیده

The 2B protein of enteroviruses is the viral membrane-active protein that is responsible for the modifications in host cell membrane permeability that take place in enterovirus-infected cells. The 2B protein shows structural similarities to the group of lytic polypeptides, polypeptides that permeate membranes either by forming multimeric membrane-integral pores or, alternatively, by lying parallel to the lipid bilayer and disturbing the curvature and symmetry of the membrane. Our aim is to gain more insight into the molecular architecture of the 2B protein in vivo. In this study, the possible existence of multimers of the coxsackie B3 virus 2B protein in single living cells was explored by fluorescence resonance energy transfer (FRET) microscopy. FRET between fusion proteins 2B-ECFP and 2B-EYFP (enhanced cyan and yellow fluorescent variants of green fluorescent protein) was monitored by using spectral imaging microscopy (SPIM) and fluorescence lifetime imaging microscopy (FLIM). Both techniques revealed the occurrence of intermolecular FRET between 2B-ECFP and 2B-EYFP, providing evidence for the formation of protein 2B homomultimers. Putative models for the mode of action of the membrane-active 2B protein and the formation of membrane-integral pores by 2B multimers are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oligomerization of the human serotonin transporter and of the rat GABA transporter 1 visualized by fluorescence resonance energy transfer microscopy in living cells.

Recent biochemical studies indicate that the serotonin transporter can form oligomers. We investigated whether the human serotonin transporter (hSERT) can be visualized as an oligomer in the plasma membrane of intact cells. For this purpose, we generated fusion proteins of hSERT and spectral variants of the green fluorescent protein (cyan and yellow fluorescent proteins, CFP and YFP, respective...

متن کامل

Interaction of EGF receptor and Grb2 in living cells visualized by fluorescence resonance energy transfer (FRET) microscopy

The interaction of activated epidermal growth factor receptor (EGFR) with the Src homology 2 (SH2) domain of the growth-factor-receptor binding protein Grb2 initiates signaling through Ras and mitogen-activated protein kinase (MAP kinase) [1,2]. Activation of EGFRs by ligand also triggers rapid endocytosis of EGF-receptor complexes. To analyze the spatiotemporal regulation of EGFR-Grb2 interact...

متن کامل

Loose interaction between glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase revealed by fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy in living cells.

Loose interaction between the glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoglycerate kinase (PGK) was visualized in living CHO-K1 cells by fluorescence resonance energy transfer (FRET), using time-domain fluorescence lifetime imaging microscopy. FRET between active tetrameric subunits of GAPDH linked to cerulean or citrine was observed, and this FRET signal was...

متن کامل

Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations

The current advances in fluorescence microscopy, coupled with the development of new fluorescent probes, make fluorescence resonance energy transfer (FRET) a powerful technique for studying molecular interactions inside living cells with improved spatial (angstrom) and temporal (nanosecond) resolution, distance range, and sensitivity and a broader range of biological applications.

متن کامل

Confocal fluorescence resonance energy transfer microscopy study of protein-protein interactions of lens crystallins in living cells

PURPOSE To determine protein-protein interactions among lens crystallins in living cells. METHODS Fluorescence resonance energy transfer (FRET) microscopy was used to visualize interactions in living cells directly. Two genes, one (alphaA-crystallin) fused with green fluorescence protein (GFP) and the other (each of the following genes: alphaB-, betaB2-, gammaC-crystallin, and R120G alphaB-cr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 76 18  شماره 

صفحات  -

تاریخ انتشار 2002